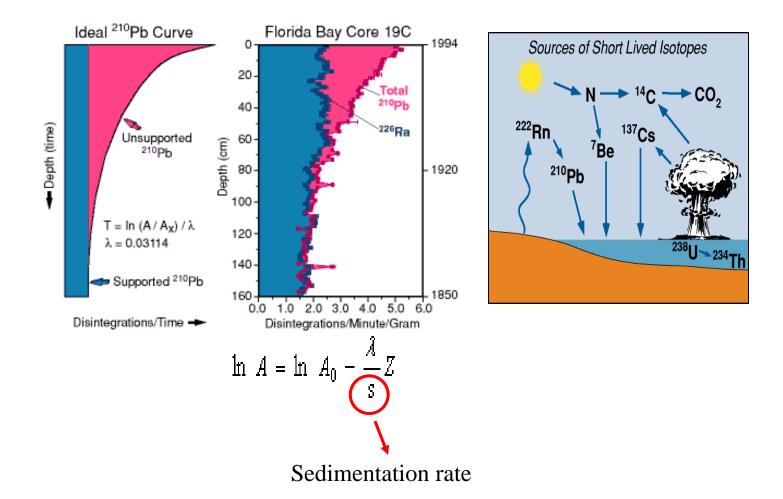


Comparative study on the chronology in the sediment of estuary/coast by multi-radionuclides

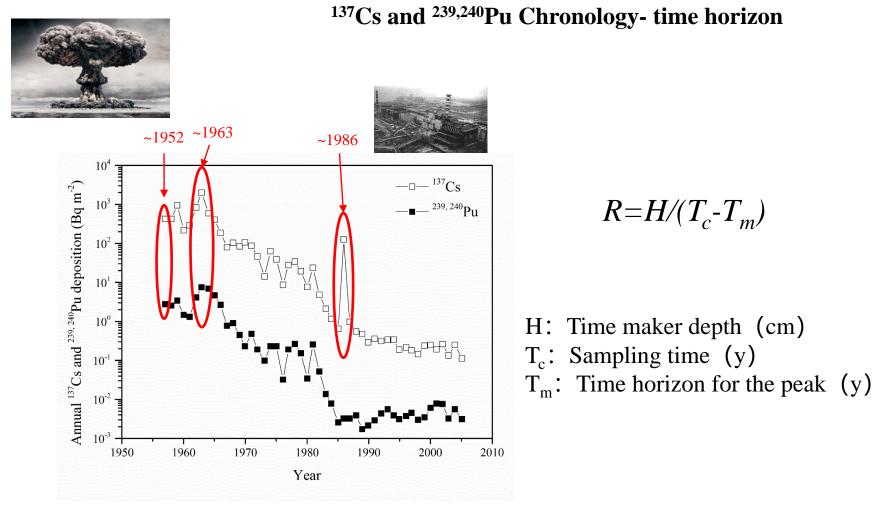
Jinzhou Du, Lijun Zhao, Binbin Deng, Juan Du, Jinlong Wang jzdu@sklec.ecnu.edu.cn

State Key Laboratory of Estuarine and Coastal Research

(East China Normal University)


Why sediment rate? Why radionuclides?

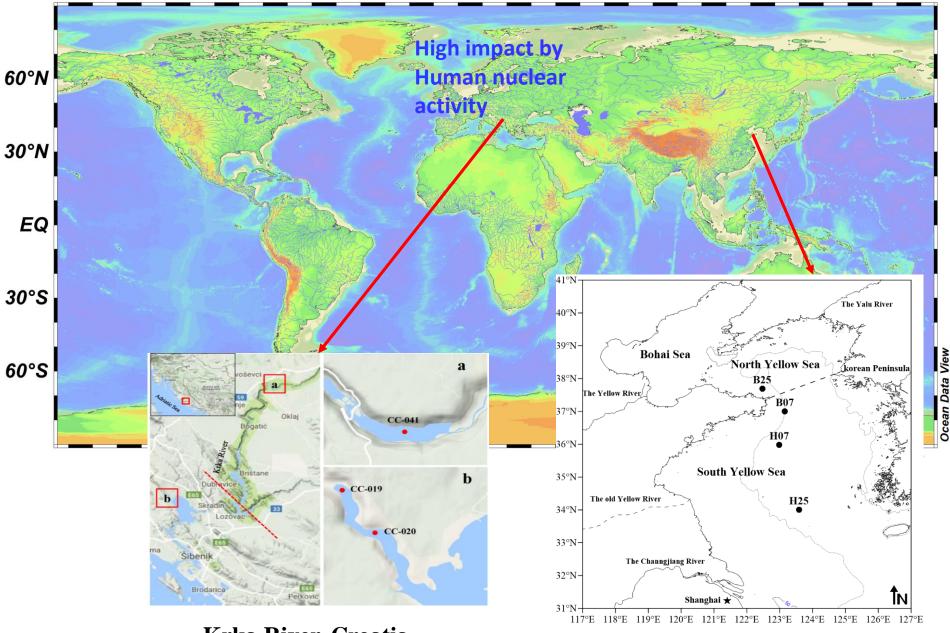
Land Estuarine and Coastal areas Ocean


- The Estuarine and Coastal areas are the end of rivers, but also the start of the ocean.
- It is estimated that around 90% of riverine input sediment can be deposited in estuaries and adjacent shelves (Milliman and Meade, 1983; Corbett et al., 2006).
- The modern sedimentation rate is very important for understanding the fates of particle—active substances (i.e. pollutants) and for the eco-environment recording.
- Among all the methods to estimate the sedimentation rate, radionuclides chronology think to be more efficency.

Principle of chronology by radionuclides

²¹⁰Pb Chronology- decay of ²¹⁰Pb_{ex}

Principle of chronology by radionuclides



Annual ¹³⁷Cs and ^{239, 240}Pu deposition (Bq m⁻²) observed at Tsukuba during 1957–2005 (Hirose et al., 2008).

Match well or not well by radionuclides

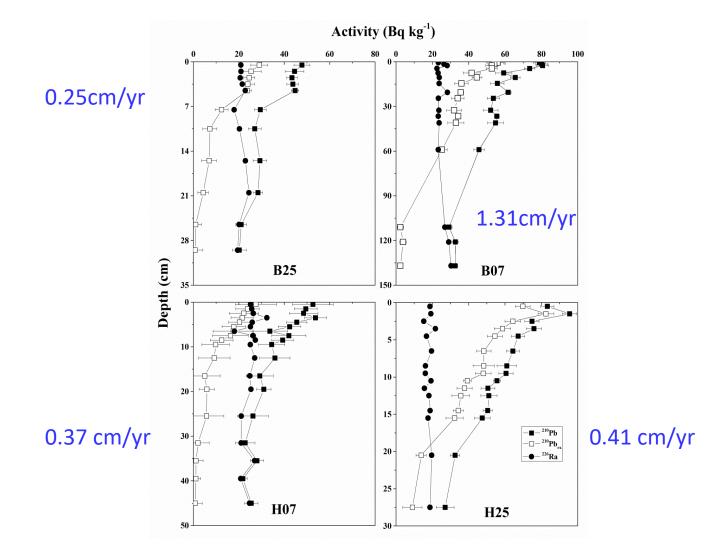
Sampling sites

Krka River, Croatia

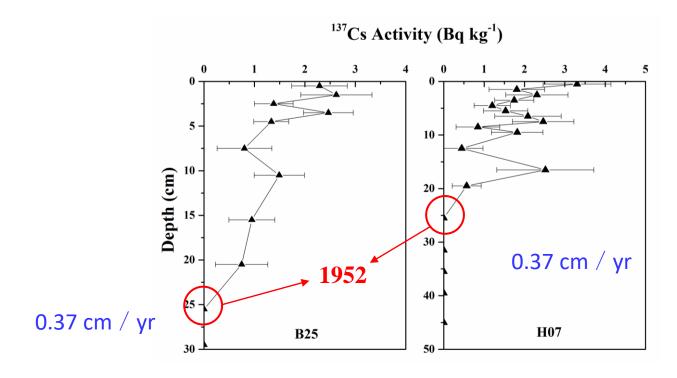
The Yellow Sea

Sampling and radionuclides analysis

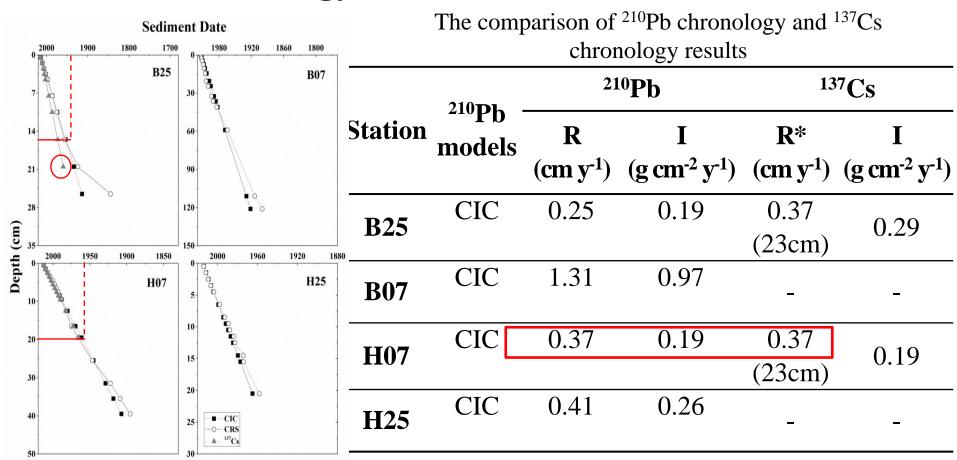
Diving to the bottom of the Krka River to collect sediment cores



Gamma Spectrometry-²¹⁰Pb, ¹³⁷Cs

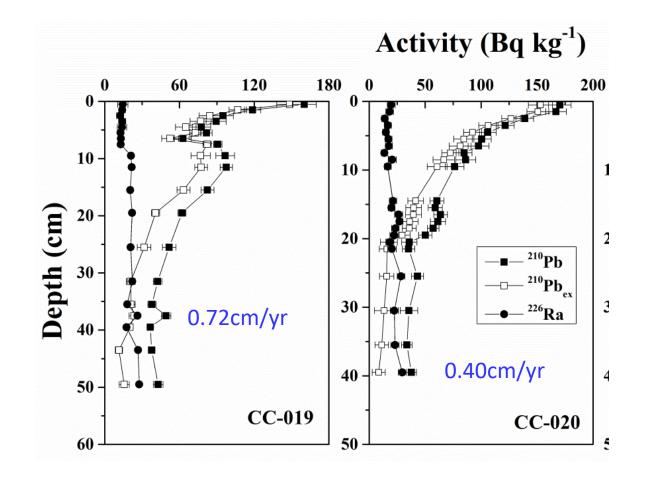

ICP-MS-^{239,240}Pu

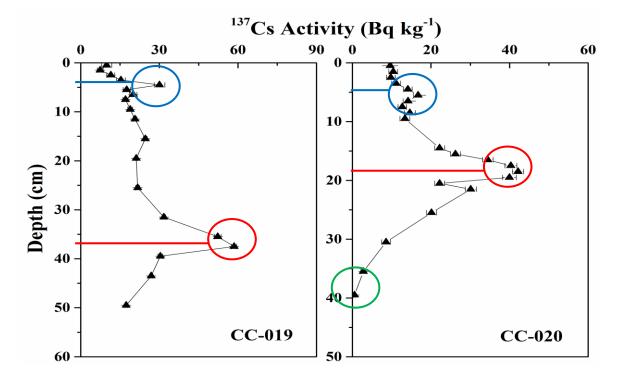
Sediment cores in the Yellow Sea


Vertical distribution of ²¹⁰Pb, ²²⁶Ra and ²¹⁰Pb_{ex} in the sediment cores in the Yellow Sea.

Sediment cores in the Yellow Sea

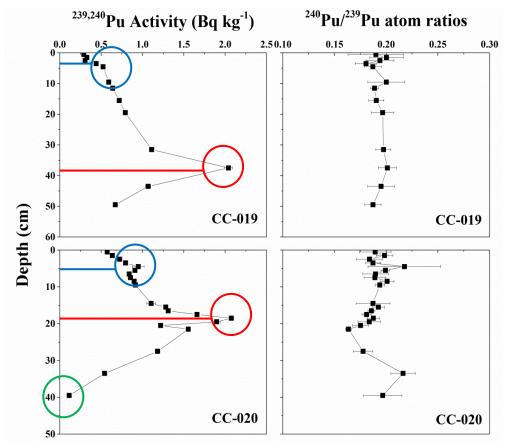
Vertical distribution of ¹³⁷Cs in sediment cores B25 and H07.


Sediment chronology from ²¹⁰Pb and ¹³⁷Cs


¹³⁷Cs move to more deep in B25?

The chronology by ²¹⁰Pb is well agreement with that by ¹³⁷Cs for H07 (1952 time-poins), but not for B25

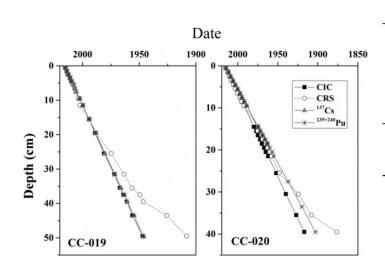
Sediment cores in the Krka River, Croatia


Sediment cores in the Krka River, Croatia

Vertical distribution of and ¹³⁷Cs in the sediment cores from the Krka River.

High radioactivity
Clearly show 3 time-points(1952, 1963 and 1986)

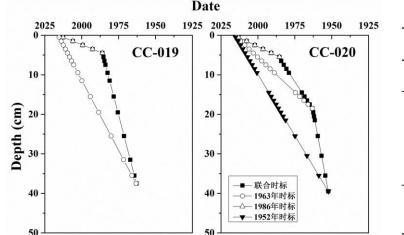
Sediment cores in the Krka River, Croatia


Vertical distribution of ^{239,240}Pu and ²³⁹Pu/²⁴⁰Pu atom ratios in sediment cores from sediment cores from the Krka River.

High radioactivity

Clearly show 3 time-points(1952, 1963 and 1986)

➢ The good correspondence between ¹³⁷Cs peaks and ^{239,240}Pu peaks can be observed in both sediment cores.


Sediment chronology from ²¹⁰Pb ¹³⁷Cs/^{239,240}Pu with different time points

核素	定年模型	CC-019		CC-020	
		R#	Ι	R [#]	Ι
²¹⁰ Pb	CIC	0.72	0.45	0.40	0.22
¹³⁷ Cs - ²³⁹⁺²⁴⁰ Pu	1986*	0.15 (4.5cm)	0.09	0.18 (5.5cm)	0.10
	1963*	0.71 (37.5cm)	0.45	0.35 (18.5cm)	0.19
	1952*	-	-	0.62 (39.5cm)	0.34
	1986*	0.15 (0-5cm)	0.09	0.15 (4.5cm)	0.08
	1963*	0.71 (0-38cm)	0.45	0.35 (18.5cm)	0.19
	1952*	-	-	0.62 (39.5cm)	0.34

The chronology by ²¹⁰Pb is well agreement with those both by ¹³⁷Cs and Pu with 1963 time point, but not for the 1952 and 1986 time points

Sediment chronology from ¹³⁷Cs/^{239,240}Pu with different time points

核素	定年模型	CC-019		CC-020	
		$\mathrm{R}^{\#}$	Ι	$\mathrm{R}^{\#}$	Ι
²¹⁰ Pb	CIC	0.72	0.45	0.40	0.22
¹³⁷ Cs -	1986*	0.15 (4.5cm)	0.09	0.18 (5.5cm)	0.10
	1963*	0.71 (37.5cm)	0.45	0.35 (18.5cm)	0.19
	1952*	-		0.62 (39.5cm)	0.34
²³⁹⁺²⁴⁰ Pu	1986*	0.15 (0-5cm)	0.09	0.15 (4.5cm)	0.08
	1963*	0.71 (0-38cm)	0.45	0.35 (18.5cm)	0.19
	1952*	1	-	0.62 (39.5cm)	0.34

> The sediment date calculated by the 1986 peak point are older than those by the 1963 peak point (lower sedimentation rate than those from the 1986 time point), indicating the upward movement of 137 Cs / Pu on the top of sediment cores.

➤ The sediment date calculated by the 1952 time point are much younger than using the 1963 time point (larger sedimentation rate than those from the 1963 time point), indicating the downward movement of ¹³⁷Cs / Pu on the bottom of sediment cores.

REMARKING SUMMARY

➢ Even in stable sedimentary condition, the mobility (or diffusion) of ¹³⁷Cs / Pu would limit the chronology application in the marine environment in some cases, especial for 1950s and 1986 time points.

➢ More case study need to be identified.

Lab study is necessary for mobility of ¹³⁷Cs / Pu / ²¹⁰Pb in different conditions such as oxidation / Wang etal.2017 reduction, organic components, etc.

Thank for your attention!

