

8th CJK IMBeR Symposium

Atmospheric Deposition of ⁷Be, ²¹⁰Pb and ²¹⁰Po during Typhoons and Thunderstorm in Shanghai, China and global Data Synthesis

Juan Du¹ (杜娟), Mark Baskaran², Jinzhou Du^{1,*}, Lijun Zhao¹

dj336699@126.com

¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, P. R. China

²Department of Geology, Wayne State University, Detroit, Michigan, USA

Introduction

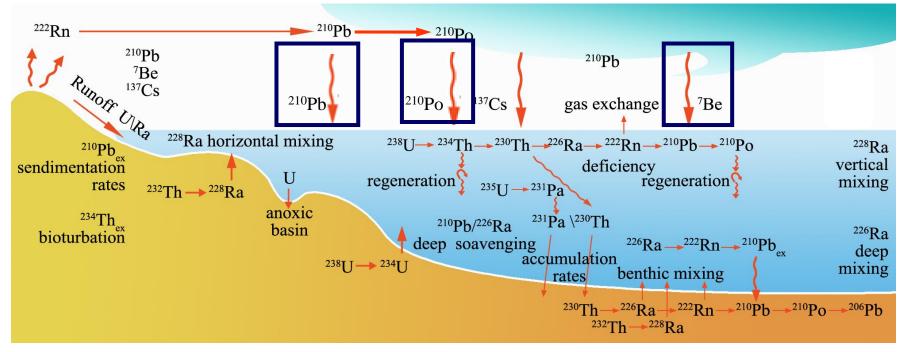


Figure 1. The application of radionuclides in the estuarine and costal area.

- Early Beryllium-7 (⁷Be, half-life, $T_{1/2} = 53.3$ d), a typical cosmogenic radionuclide, is produced in the stratosphere and upper troposphere.
- ➤ Lead-210 (²¹⁰Pb, $T_{1/2} = 22.3$ y) and polonium-210 (²¹⁰Po, $T_{1/2} = 138.4$ d) are both the progenies of ²²²Rn ($T_{1/2} = 3.82$ d), which emanates primarily from the rocks and minerals on the earth's upper crust and embarks on its journey in the atmosphere via advection and diffusion.

Introduction

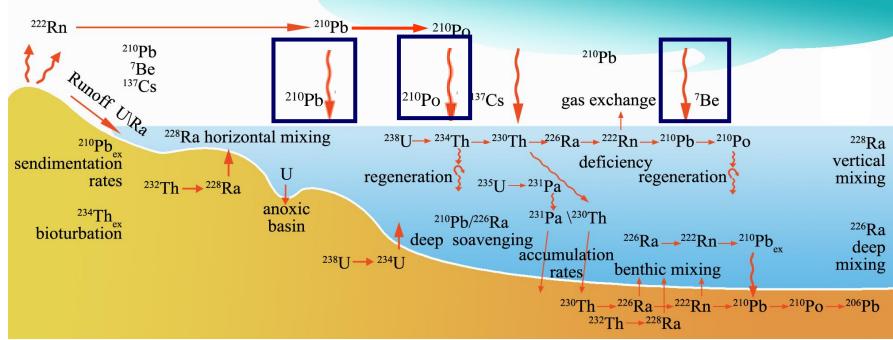
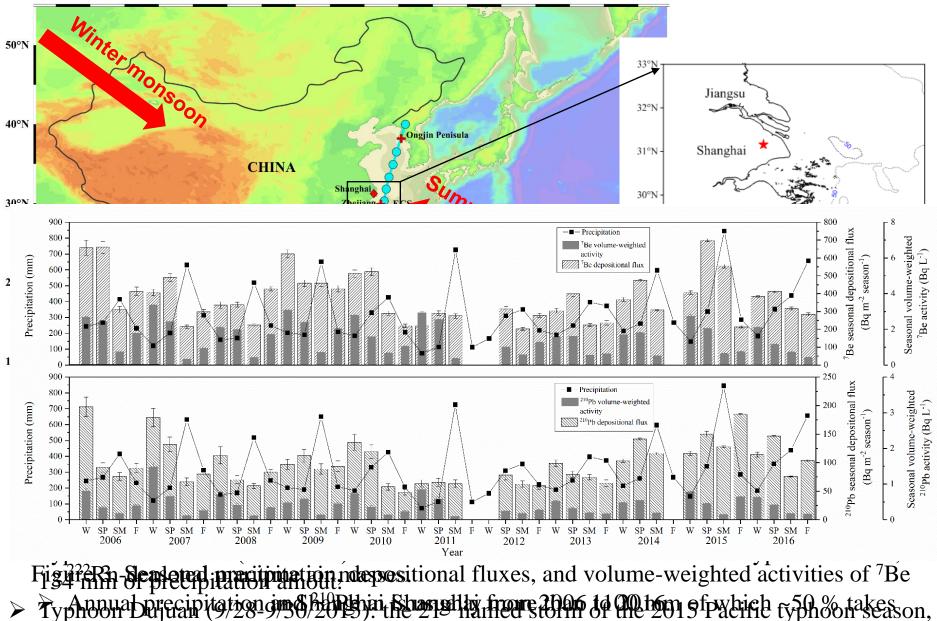



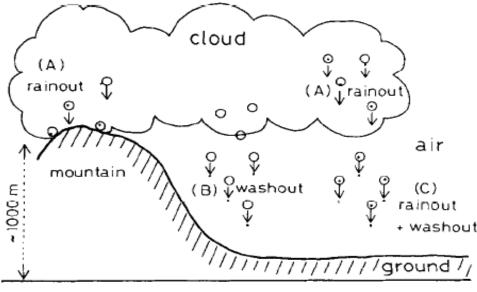
Figure 1. The application of radionuclides in the estuarine and costal area.

⁷Be, ²¹⁰Po and ²¹⁰Pb are all partical-reactive and primarily removed by wet perecipitation from the atmosphere, these three radionuclides have been widely used as tracers for studying atmospheric and surface earth processes such as time scales of atmospheric mixing (both horizontal and vertical), stability, and removal/transport of air masses, source tracking, rates of soil erosion and sediment accumulation/mixing in aqueous systems (e.g. Baskaran, 1995; Chen et al., 2016; Du et al., 2008, 2015; McNeary & Baskaran, 2007; Moore et al., 1973; Pham et al., 2011; Poet et al., 1972; Turekian & Graustein, 2003).

Study area-Shanghai

55 place during the raining season (June – August).

Sample information


RE-I: Thunderstorm: 6/25-6/28/2015, totally 3 samples.

RE-II: Typhoon Chan-hom: 7/11/2015, totally 7 samples.

RE-III: Typhoon Dujuan: 9/28-9/30/2015, totally 3 samples.

Sample ID	Sample collection nterval ^a	Central pressure (hPa) ^b	Time in hour (Precipitaion) ^c	⁷ Be Flux (Bq m ⁻² d ⁻¹)	^{7}Be (Bq L ⁻¹)	210 Pb Flux (Bq m ⁻² d ⁻¹)		²¹⁰ Po Flux (mBq $m^{-2} d^{-1}$)	210 Po (mBq L ⁻¹)	⁷ Be/ ²¹⁰ Pb AR	²¹⁰ Po/ ²¹⁰ Pb AR
RE-I	20:00, 25 Jun-18:30, 26 Jun, 2015	-	22.5 (39.2)	26.8±2.2	0.64 ± 0.05	4.32±0.56	0.10 ± 0.01	348 ± 8	8.50 ± 0.17	6.21±0.55	0.082 ± 0.012
	18:30, 26 Jun-19:20, 27 Jun 2015	-	22.5-48.3 (9.0)	11.5±1.0	1.37±0.11	3.04±0.42	0.15 ± 0.01	282 ± 8	13.3±0.8	3.77±0.71	0.095 ± 0.007
	19:20, 27 Jun-16:20, 28 Jun 2015	-	48.3-69.3 (78.4)	19.5±1.3	0.22 ± 0.02	5.23±0.75	0.06 ± 0.01	432±20	4.83±0.17	3.74 ± 0.32	0.083 ± 0.015
RE-II	15:05, 10 Jul-9:00, 11 Jul, 2015	925	17.9 (27.4)	325±27	8.84 ± 0.74	19.1±2.2	0.52 ± 0.06	1650±17	50.7 ± 0.5	$17.0{\pm}1.5$	0.096 ± 0.012
	9:00 -11:10, 11 Jul 2015	935	17.9-20.1 (11.8)	154±13	1.18 ± 0.10	$15.0{\pm}1.8$	0.12 ± 0.01	1405 ± 50	10.8 ± 0.3	10.3±0.9	0.094 ± 0.014
	11:10 -13:00, 11 Jul 2015	945	20.1-21.9 (9.4)	32.9±2.7	0.27 ± 0.02	13.5±1.8	0.11 ± 0.01	1200 ± 48	$9.67{\pm}0.33$	2.43±0.20	0.088 ± 0.007
	13:00 -16:00, 11 Jul 2015	945	21.9-24.9 (15.7)	36.4±3.4	0.29±0.03	6.69±0.94	0.05 ± 0.01	628 ± 27	$5.00{\pm}0.17$	5.44 ± 0.46	0.094 ± 0.015
	16:00 -18:00, 11 Jul 2015	955	24.9-26.9 (14.9)	31.4±2.9	0.18 ± 0.02	4.17±0.66	0.02 ± 0.01	223 ± 12	1.83 ± 0.17	7.54±0.63	0.079 ± 0.013
	18:00 -22:00, 11 Jul 2015	955	26.9-30.9 (17.6)	39.0±3.4	0.37 ± 0.03	3.35±0.51	0.03 ± 0.01	303 ± 13	$2.83{\pm}0.17$	11.6±1.0	0.089 ± 0.010
	22:00, 11 Jul -7:30, 12 Jul 2015	960	30.9-40.4 (37.2)	89.2±7.4	0.95 ± 0.08	5.64 ± 0.97	0.06 ± 0.01	620 ± 8	5.83 ± 0.17	15.8±1.3	0.097 ± 0.005
RE-III	16:15, 28 Sep-10:40, 29 Sep 2015	935	18.4 (11.8)	15.3±1.4	1.00 ± 0.09	3.83±0.69	$0.25{\pm}0.05$	267±20	17.3±1.3	4.00 ± 0.43	0.069 ± 0.009
	10:40-21:55, 29 Sep 2015	990	18.4-29.5 (11.8)	41.5±3.2	1.73±0.15	2.84 ± 0.52	0.12 ± 0.02	255±17	10.2±0.7	14.6 ± 1.4	0.086 ± 0.012
	21:55, 29 Sep-8:40, 30 Sep 2015	1005	29.5-40.4 (31.4)	31.8±2.7	0.45 ± 0.04	9.22±1.63	0.13 ± 0.02	840±67	11.8±1.0	3.45±0.29	0.090±0.011

Table 1. Deposition fluxes and activities of ⁷Be, ²¹⁰Pb and ²¹⁰Po measured in three rainout events in Shanghai, China in 2015.

O snow flakes or rain drops

aerosols with radionuclides

Figure 3. A pictorial model of aerosol scavenging by precipitation (snow flakes or rain drops). (A) Scavenging by rainout only, (B) by washout only and (C) by both rainout and washout. (Ishikawa and Murakami, 1995)

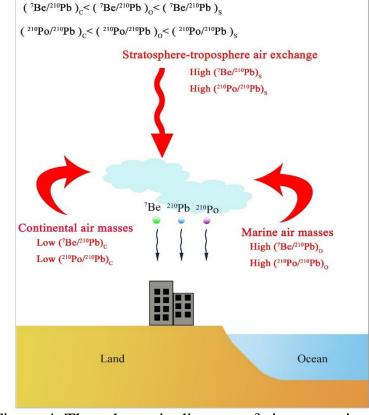
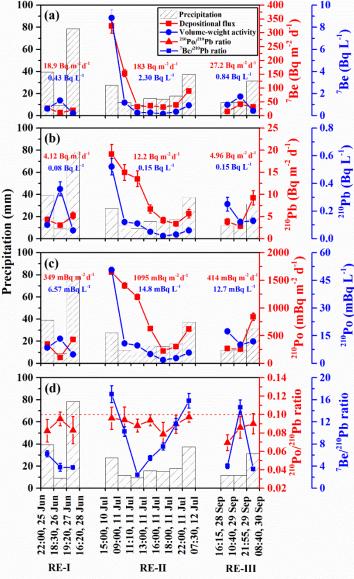



Figure 4. The schematic diagram of air masses intrusions into the condensing cloud at the coastal area.

- The radionuclides are removed from the atmosphere through both by washout and rainout processes.
- The activities ⁷Be, ²¹⁰Pb and ²¹⁰Po in rainwater are generally higher in the early stage of and subsequently decreased due to dilution effect.
- If a certain air mass is undergoing condensation without any additional input from the surrounding air masses via lateral injection and/or from upper troposphere lower stratosphere, the specific activities of all three radionuclides in one rainout event are anticipated to decrease systematically from the beginning.

- The obvious variations of the ⁷Be/²¹⁰Pb activity ratios can be observed in all three rainout events, indicating the change of the relative fraction of maritime and continental air masses drawn into the typhoon's low pressure system.
- In RE-I, prior to the onset of rainfall, it appears that upper air mass downdraft resulted in higher ⁷Be (relative to ²¹⁰Pb) in aerosols below cloud condensation height. Once those excess ⁷Be are removed by first precipitation, then, the ⁷Be/²¹⁰Pb ratio had remained constant.

Figure 5. Depositional fluxes and activities of (a) ⁷Be, (b) ²¹⁰Pb and (c) ²¹⁰Po during three rainout events in summer 2015 (RE-I, RE-II and RE-III) in Shanghai, China. (d) ²¹⁰Po/²¹⁰Pb ratios and ⁷Be/²¹⁰Pb ratios during three rainout events. The red dash line in (d) represents for ²¹⁰Po/²¹⁰Pb is 0.10. The numbers represent the bulk depositional fluxes and the specific activities of the three radionuclides in three rainout events.

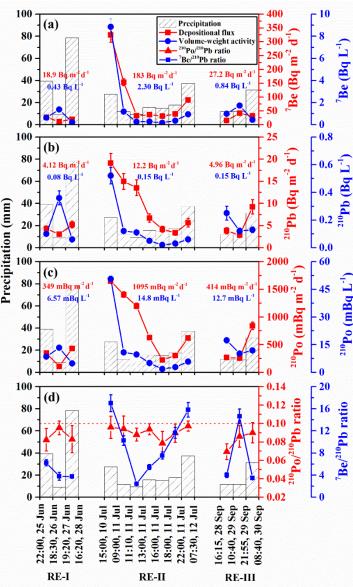


Figure 5. Depositional fluxes and activities of (a) ⁷Be, (b) ²¹⁰Pb and (c) ²¹⁰Po during three rainout events in summer 2015 (RE-I, RE-II and RE-III) in Shanghai, China. (d) ²¹⁰Po/²¹⁰Pb ratios and ⁷Be/²¹⁰Pb ratios during three rainout events. The red dash line in (d) represents for ²¹⁰Po/²¹⁰Pb is 0.10. The numbers represent the bulk depositional fluxes and the specific activities of the three radionuclides in three rainout events.

Figure 6. Air masses backward trajectory analyses of the RE-II.

- At the beginning of the RE-II, the typhoon Chan-hom hadn't impacted Shanghai deeply. The source of air masses at 12 km height were still from the inland area. Thereafter, typhoon Chan-hom brought ²¹⁰Pb-depleted air masses from the Pacific Ocean (PO) to Shanghai, leading to the decrease of ²¹⁰Pb and ²¹⁰Po.
- The depositional fluxes of ⁷Be and ²¹⁰Pb as well as the ⁷Be/²¹⁰Pb AR indicate the injection of extraneous air masses into typhoon and the intrusion of variable fractions of continental and maritime air masses to ¹⁰Shanghai.

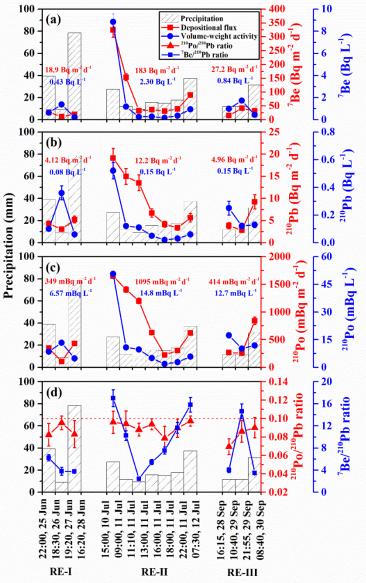


Figure 5. Depositional fluxes and activities of (a) ⁷Be, (b) ²¹⁰Pb and (c) ²¹⁰Po during three rainout events in summer 2015 (RE-I, RE-II and RE-III) in Shanghai, China. (d) ²¹⁰Po/²¹⁰Pb ratios and ⁷Be/²¹⁰Pb ratios during three rainout events. The red dash line in (d) represents for ²¹⁰Po/²¹⁰Pb is 0.10. The numbers represent the bulk depositional fluxes and the specific activities of the three radionuclides in three rainout events.

In RE-III, the ⁷Be activity decreased by 79% but both the ²¹⁰Pb and ²¹⁰Po activities were almost constant from the second to the third sample, suggesting the continuous intrusion of air masses bringing ²¹⁰Pb and ²¹⁰Po below the condensation cloud.

- ➤ The bulk depositional fluxes of ⁷Be in RE-I, RE-II and RE-III were 18.9, 183 and 27.2 Bq m⁻² d⁻¹, respectively;
- ➤ The bulk depositional fluxes of ²¹⁰Pb in RE-I, RE-II and RE-III were 4.12, 12.2 and 4.96 Bq m⁻² d⁻¹, respectively;
- RE-I, RE-II and RE-III together brought 18.6% of the total annual precipitation, but deposited about 28% and 11% of the total annual bulk depositional fluxes of ⁷Be and ²¹⁰Pb, respectively.

		Percent of	⁷ Be		²¹⁰ Pb		
Location	Sample	Annual	Percent of annual flux	α	Percent of annual flux	α	References
Detroit, USA	RWB 1	5.8%	15.8%	2.72	8.6%	1.48	McNeary & Baskaran, 2003
Detroit, OSA	RWB 10	7.5%	9.6%	1.28	5.4%	0.72	
	RWB 16	6.3%	5.0%	0.79	3.9%	0.62	
	RWB 20	3.6%	3.3%	0.92	4.4%	1.22	
	RWB 21	9.4%	6.6%	0.70	7.6%	0.81	
	RWB 25	5.0%	2.9%	0.58	6.9%	1.38	
Amagin kowan	5 heavy rainfalls	6.5%	2.2%	0.34	4.7%	0.72	Kim et al., 1998
Ansan, korea	with more than	6.6%	3.9%	0.60	2.0%	0.30	
	50 mm	11.4%	8.3%	0.73	8.9%	0.78	
	precipitation	10.5%	0.6%	0.06	1.9%	0.18	
	amount in 1992	8.2%	2.0%	0.24	1.5%	0.18	
Viewsen	11 heavy	5.1%	31.2%	6.10	3.7%	0.72	Chen et al., 2016;
Xiamen,	rainfalls more	5.3%	5.1%	0.97	6.6%	1.26	Jia et al., 2003
China [*]	than 50 mm	5.6%	11.2%	2.00	4.0%	0.72	
Cillia	precipitation	5.8%	18.6%	3.20	8.3%	1.44	
	amount from	6.0%	4.7%	0.80	3.8%	0.63	
	2004 to 2005	6.2%	2.4%	0.39	1.1%	0.18	
		6.6%	4.2%	0.64	4.2%	0.63	
		6.9%	25.7%	3.71	14.3%	2.07	
		7.1%	3.8%	0.54	3.8%	0.54	
		9.9%	1.7%	0.17	0.9%	0.09	
		12.8%	28.8%	0.17	4.6%	0.09	
	Typhoon Melor	17.8%	10.0%	4.25	4.5%		
California,	in 2010	17.9%	9.2%	0.51	-		Conaway et al., 2013
USA	6 extra-tropical	3.1%	5.2%	1.68	-		
	storms in 2010	7.0%	6.3%	0.90	-		
		9.2%	9.9%	1.07	•		
		3.2%	3.8%	1.18	-		
		5.8%	3.7%	0.65	-		
		5.8%	1.2%	0.73			7
Nankang, Taiwan [*]	Rainfalls caused by typhoon during 9 year time series from 1996 to 2005	31.0%	16.0%	0.52	12.0%	0.39	Huh et al., 2006
	Rainfails in plum						-
	season during 9 year time series from 1996 to 2005	8.0%	7.0%	0.88	7.0%	0.88	
Ahemedabad,	5 heavy rainfalls	7.0%	100 C		6.5%	0.93	Rastogi & Sarin, 2008
Allemedabad,	with more than	7.0%	-		1.7%	0.24	-
India	50 mm	7.5%	-		2.7%	0.36	
India	precipitation	14.0%	-		20.5%	1.47	
	amount in 2000 and 2001	14.0%	-		7.0%	0.50	
San Luis,	3 heavy rainfalls	7.7%	8.1%	1.05	-	-	Ayub et al., 2009
Jan Luis,	with more than	7.9%	10.1%	1.28	-	-	
Argentina	50 mm precipitaiton amount in 2007	8.1%	10.5%			-	
	and 2008			1.30			
Shanghai,	RE-I	7.5%	3.7%	0.50	3.3%	0.44	This study
China	RE-II	7.9%	21.0%	2.66	5.6%	0.71	
Chilld	RE-III	3.2%	3.1%	0.96	2.3%	0.70	
	5 heavy rainfalls	4.9%	2.1%	0.43	1.6%	0.33	Kong, 2012
	with more than	5.0%	3.6%	0.72	0.9%	0.18	
	50 mm	5.5%	0.9%	0.17	0.2%	0.04	
	precipitaiton	6.2%	8.8%	1.42	6.9%	1.12	
	amount in 2010			1.42			

6.2%

2.1%

0.34

3.7%

0.59

Table 2. Percentages of bulk depositional fluxes and precipitation-normalized enrichment factors (α) of ⁷Be and ²¹⁰Pb during pulse rainout events.

A summary of the percentages the total annual rainfall, bulk depositional fluxes of ⁷Be and ²¹⁰Pb during pulse rainout events (\geq 50 mm precipitation from single rainout event) around the world are summarized, it can been seen that these pulse rainout events significantly contributed to the annual depositional fluxes of both ⁷Be and ²¹⁰Pb, especially the rainout events caused by typhoon.

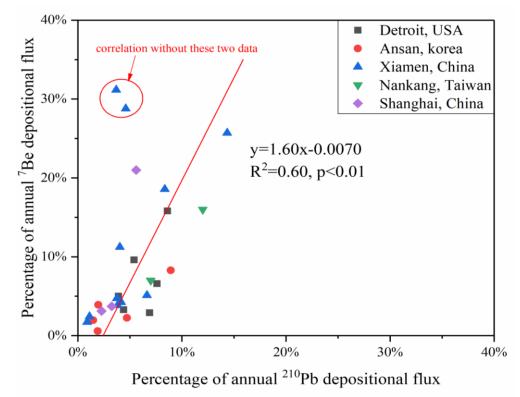


Figure 7. Percentages of annual ⁷Be depositional flux plotted against percentages of annual ²¹⁰Pb depositional flux.

- A strong linear correlation between the percentages of annual ⁷Be depositional flux and the percentages of annual ²¹⁰Pb depositional flux in the pulse rainout events is observed (R²=0.60, p<0.01);</p>
- ➤ The slope of 1.60 ± 0.27 indicates that these pulse rainout events brought more ⁷Be than ²¹⁰Pb, suggesting a relatively enhanced convective mixing or stratosphere-troposphere exchange during these rainout events.

To quantify the variations in the depositional fluxes of ⁷Be and ²¹⁰Pb in pulse rainout events, the precipitation-normalized enrichment factors (α) were calculated in this study (Baskaran, 1995):

 $\alpha = P_{\rm f} / P_p$

- where $P_{\rm f}$ and $P_{\rm p}$ are the percentages of annual depositional flux and amount of precipitation for single pulse rainout events, respectively.
- Values of $\alpha > 1.0$ indicate that the depositional fluxes were higher than expected from the amount of precipitation;
- $\alpha < 1.0$ indicate depletion of the depositional fluxes of the nuclides.

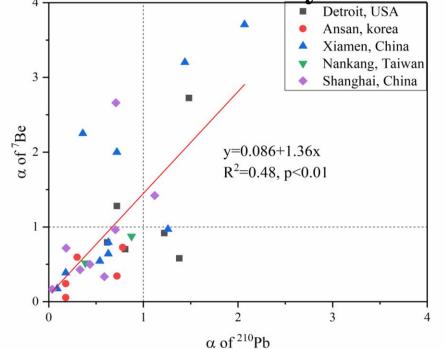


Figure 8. The precipitation-enrichment factors of ⁷Be plotted against the precipitation-enrichment factors of ²¹⁰Pb for the pulse rainout events.

- In 27 out of 42 and 28 out of 36 pulse rainout events had α values < 1.0 for ⁷Be and ²¹⁰Pb, respectively, indicating that in the most pulse rainout events, the depositional fluxes of ⁷Be and ²¹⁰Pb were lower relative to the amount of precipitation due to the dilution effect by the large amounts of precipitation.
- > The α value > 1.0 for both radionuclides could still been found in some stations, showing that there were enrichments of ⁷Be or ²¹⁰Pb in some pulse rainout events, which might have been caused by the intrusions of air masses (vertical or horizontal transportation) during the rainfall.

- The study of continuous time-series samples can help us better understanding the variations of air masses intrusions during rainfall, but more studies during pulse precipitation in coastal and deep oceanic stations, as well as time-series measurements of δ¹⁸O and δ²H are needed to better understand the intrusions of these air masses.
- This study has been submitted to the Journal of Geophysical Reasearch.

Thank for your attention!