Evaluation and prediction of the influences of ocean acidification to the subarctic coast

Takuto Yamaka^{*}, Shintaro Takao⁽¹⁾, and <u>Masahiko Fujii</u>^{*} ^{*}Graduate School of Environmental Science, Hokkaido University ⁽¹⁾National Institute for Polar Research E-mail: mfujii@ees.hokudai.ac.jp

Anticipated economic loss caused by ocean acidification (OA)

- Decrease in mollusk catch in USA by 1.7 through 10 billion USD by the middle of 21st century (Cooley et al., 2009, Environ. Res. Lett.)
- Decrease in world's mollusk catch by 100 billion USD by the end of 21st century (Narita et al., 2012, Climatic Change)
- Decrease in calcifier catch in Japan by 5 billion through 20 billion USD by the end of 21st century (Fujii, 2018, Kaiyo monthly)

Evaluation and prediction of the influences of ocean acidification to the subarctic coast

<u>Outline</u>

- 1. Why subarctc?
- 2. Why coast?
- 3. Monitoring
- 4. Modeling
- 5. Summary

This study aims to clarify diurnal/seasonal variations of ocean acidification (OA) properties (i.e. pH and Ω) in the subarctic coast in Japa,

1. Why subarctic?

- Vulnerable to OA, because of lower water temperature with higher CO₂ solubility
- Relatively high dependency of fisheries on calcifiers (see next slide)
- Diurnal/seasonal variations of OA-related parameters (such as pH and Ω) have not yet well known, because of paucity of data in winter when bad weather prevents us from observation

In Japan,

- one-fourth of total fish catch*
- half of calcifier catch^{**}
- 60% of shellfish catch*** are from the subarctic (Hokkaido \rightarrow Possible impacts of OA

(https://www.ees.hokudai.ac.jp/carbon/mfujii/en/research/)

	Target species	Fish catch in Japan (J) (hundred million yen /yr)	Fish catch in Hokkaido (H) (hundred million yen / yr)	(H) / (J) (%)
Calcifiers	Shellfish	682	409	60***
	Shrimps	219	36	16
	Crabs	193	47	24
	Sea urchins	74	52	71
	Krills	1	0	2
	Subtotal	1,169	544	47**
Non- calcifiers		6,662	1,475	22
Total		7,831	2,020	26*
(農林水産省統	計部 漁業・養殖	業生産統計年報)		5

2. Why coast?

 Large diurnal/seasonal variation

 Combined with other human impacts (e.g. eutrophication)

Simulated aragonite saturation state (Ωar) in the bottom of the central Tokyo Bay in September (Yamamoto-Kawai, 2015, J. Oceanogr.)

3. Monitoring

Ongoing/past OA monitoring cites around Japan coast

M1: Oshoro Bay
[Hokkaido Univ./2013 - present]
M2: Tsugaru Straight
[JAMSTEC/2014 - present]
M3: Kashiwazaki Station
[MERI/1982 - present]
M4: Onjuku Station
[MERI/1982 - present]
M5: Tokyo Bay and Tateyama Bay
[TUMSAT/2011 - present]
M6: Shimoda Bay
[Tsukuba Univ./2011 - present]
M7: Sesoko Island
[Ryukyu Univ./2000 - present]
M8: Akkeshi Bay and Lake Akkeshi
[Hokkaido Univ./2014 - present]
M9: Arasaki Station
[FREA/2009 - 2011]

Source: Ono, T., M. Fujii, S. Takao, and Japan Ocean Acidification Network members, PICES 2017 Annual Meeting, Vladivostok, Russia, Sep. 22-Oct. 1, 2017

Oshoro Marine Station, Hokkaido University: A monitoring site in the subarctic coast in

2nd-generation monitoring @5m-depth (T, S, pH, DO, TA, DIC)

Oct. 2015 - Dec. 2017

1st-generation monitoring @2m-depth (T, S, pH, TA, DIC) Jul. 2013 - Oct. 2015 Dec. 2017 - May 2018

3rd-generation monitoring @3m-depth (T, S, pH, DO, TA, DIC) May 2018 - Present

水深約5

北海道大学 共同利用 施設忍路臨海実験所

Source: Google Earth

Monitoring

Parameter	Method	Sampling time	
Temperature ¹	Sensor		
Salinity ¹		Every hour	
pH ²			
Dissolved oxygen (DO) ³			
Dissolved inorganic carbon (DIC)	Water sample	Every 1-3 months	
Total alkalinity (TA)			
Macronutrients			
pH & CaCO ₃ saturation state (Ω)	CO ₂ SYS		

+ Hourly wind speed and precipitation (Japan Meteorological Agency)

```
<sup>1</sup>TS sensor (ACTW-USB, JFE Advantech)

<sup>2</sup>Glass electrode pH sensor (SP-11, Kimoto Electric)

<sup>3</sup>DO sensor (JFE Advantech)
```


Diurnal and seasonal variation of pH and dissolved oxygen (DO)

(Photo: Zen Tamura)

Diurnal variation of pH

 $(\Delta pH = daily maximum pH - daily minimum pH)$

Experimental design

- Ocean model: Regional Ocean Model System (ROMS)-Agrif (Penven et al., 2006, Ocean Modelling)
- Bathymetry: Etopo1 (Amante and Eakins, 2009)
- Atmospheric forcing: COADS05 (Da Silva et al., 1994)
- Boundary and initial conditions

- Physical factors: WOA09 (Locarnini et al., 2010; Antonov et al., 2010)

- Biogeochemical factors: WOAPISCES

(Goyet et al., 2000; Aumont and Bopp., 2006; Garcia et al., 2006)

Simulated dissolved inorganic carbon (µmol/I)

1950 2000 2050 2100 2150 2200 2250 2300

Summary

- First long-term OA monitoring site in the subarctic coast of Japan, but challenging...
- Large diurnal/seasonal variation of pH, mainly caused by biological production in spring/summer
- Model results well reproduce the observed physical and biological processes. Future projection is being in process

