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Importance of the primary productivity In
the Large Marine Ecosystems (LMES)

LMES

» Occupy less than 10% of the world ocean
by surface area but support over 80% of the
world fish yield (Sherman and Alexander,
1986; Pauly and Lam, 2016).

* An important component in the Earth’s
biogeochemical system (Liu et al., 2010).
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Are the seas In the northwestern Pacific more productive
than other seas in NP, or are they?
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Figure 5A. Positive correlation of 5-yr. mean annual fisheries biomass yield with 9-yr. mean annual

primary production in fast warming (red), moderately warming (yellow) and slower warming (green)
LMEs. The two blue circles represent cooling LMEs. P<0.001.
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Motivation of this study

e The PP of many coastal LMEs tends to be
overestimated by erroneous estimates of
core variables.

« What are the best algorithms for the three
core variables of PP in the three LMEs?

 How do the new PP estimates using these
parametrizations compare with the
estimates from the global assessments of
the UNEP/LME Report and the SAU Project?
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Interesting object of comparisonas -
they present a gradient of optical
complexity and distinctive
environmental characteristics.



In aguatic environments, these

variables vary in time and

through depth. PP algorithms
&e][V14 differ in how to integrate the core

variables through time of the day
and depth, and can be classified
accordingly
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PP algorithms

* Numerous PP algorithms have been
compared against the in-situ observations
(Campbell et al., 2002; Friedrichs et al, 2009;
Saba et al, 2010; Saba et al., 2011).

« Regardless of the exact formulations, these
algorithms have three core variables:
phytoplankton biomass (or absorption),
biomass-specific photosynthetic rate (or
guantum yield of photosynthesis), and Z_eu.




3 core variables in PP estimation

Surface

Attainable l
from satellites

« KPAR: Attenuation
coefficient of water
body

« Zeu: euphotic depth PP

« PP, Production :
rate per chlorophyll new production

PP algorithm




Core Var 1: Chl-a
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Core Var 1: Chl-a
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Core Var 2: biomass-specific

photosynthetic rate
Comparison of PPt algorithms
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Core Var 3: Z

Table 1. The four major approaches to derive the Z,, from satellite observation

Approach Algorithm Reference

(@) Chl-a
based (Morel and Berthon,
ase Zeuyy, = 34.0(Chl) ™% 1989)

empirical
model

Calculation for the Z,,,:

4.605

Zeuy = ————
€ty = ¥ (PAR)

Single
empirical
model K4(PAR) = 0.0864 + 0.884 x K,;(490) — 0.00137 x K,(490)~! (Morel et al., 2007)

K4(PAR) = 0.6677 X K,;(490)06763 (Pierson et al., 2009)

Switching K4(PAR) = (1—W) x K, (PAR) + W x K,"“"""* (PAR)
empirical
model K," (PAR) = 0.8045 x K, (490)°917 by Wang et al. (2009)

(Son & Wang , 2015;
Where, K, (PAR) = K,(PAR) algorithm by Morel et al. (2007) Wang et al., 2009)

turbid Rys(670)
K" (490) = ~0.05256 + 1.3537 G 125

W = —1.175 + 4.512( ”“’7"’) for [0.2604 < ”(672) < 0.4821]
Rrs (670)

Rps (490)
Rys(670)
Rrs(490)

W=0 for [ 227D < 0.2604]

W=1 for [ 27D 54 .821]

10P-

d . a(490) and b,(490) were derived from R,, using Quasi- (Leeetal., 2002, 2005 &
Cent_e re Anlytical algorithm version 5 2007)
semi- . K;(PAR)(Z) was calculated using a(490), b,(490), and sun

analytical angle (6;)
model . Finally, Zeu,q, was calculated
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Table 2. The error statistics for the six Z,, algorithms

Approach Algorithm N Bias RMSE MAE c (%)

K4(490) itself  Werdell, (2005) 128  6.453 11.149  7.902  25.30

Chl-a based Morel et al., (1989) 125 17542 23.391 18.520 41.37

Single K;(490) Pierson et al., 128 -1.048  7.326 5.998 26.63
(2008) 128  -3.003  8.208 6.885 31.19
Morel et al.,
Switching (2007b)
K ;(490) 123  -4.908  7.715 6.043 33.23

Son & Wang ,

|OP-centered (2015) 6.355 4.820 21.84

0.1530

Lee et al., (2007)




Data

e Satellite data
SeaWiFS and MODIS/Aqua (199872014)
— CHL-a:
« OC4 v6 (NASA, 2010)
— SST
— PAR

 Algorothms

— YOC for Chlorophyll-a (Siswanto et al., 2011)
— Photosynthetic rates (Kameda and Ishizaka, 2005)

— Euphotic depth (ZP Lee, 2005 and 2007)



The mean annual PP estimated by
three methods (unit.gc m=2y-1)
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Table 3. The mean annual PP estimates by the three methods
(g m-2 y-1). The numbers in the parenthesis indicate the range

In 1998-2014 period.

YS

Method - 1 778
(770~857)

Method - 2 259

(248~272)

Method - R 211
(189~247)

ECS

545
(485~590)

222
(213~229)

165
(156~170)

JES

420
(362~4606)

248
(215~255)

193
(178~204)
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PP models of other global
assessments

 LME/UNEP Report (2008): Ocean
Productivity from Absorption and Light
(OPAL) model (Marra et al,, 2003) = an
absorption-based model

» Sea around Us Project: Platt and
Sathyendranath (1988) with
parametrization based on
biogeochemical provinces. - a time and
depth-resolved model.



Comparison of the mean annual PP by three
methods of this study, the SAU Project, and the
UNEP/LME Report.

</ Method-1 (I Method-2 > Method-R ® SAU A UNEP/LME




Revised with new PP estimates
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Conclusions

1) Accurate parametrization of the core
variables is more important than choosing a
primary productivity model, and

2) The previous global LME assessments might
have overestimated the annual primary

productivity in the Yellow Sea by a factor of
2 or so.






Classification system for daily net primary productivity (NPP) models

based on implicit levels of integration
(Behrenfeld and Falkowski, 1997)

I. Wavelength-resolved models (i.e., “bio-optical models”)(WRMs)

NPP =

700 Isunset
t

[ ®(2,2) PAR(4,t,2)-2*(4,7)-Chl(z)dAdtdz - R

A=400 sunrise

II. Wavelength-integrated models (WIMs)

NPP = [ j " »(z)- PAR(t, ) - Chl(z)dtdz — R

t=sunrise

III. Time-integrated models (TIMs)
NPP = jzo P®(z)- PAR(z)- DL - Chl(z)dz

IV. Depth-integrated models (DIMs)
NPP =P - PAR(0)-DL-Chl-Z

opt



PP estimates from the previous
studies

Point measurements vary in  Tan and Shi (2006) using
the range of 11.78 ~ 3,175 mg SeaWiFS—-MODIS 2003-

C m2 d! depending on time 2005 and VGPM

and space. formulation,

Some of in—situ estimates on — I130hai Sea: 564.4 gC m2 y~

annual production are 135 265

gC m2 y! which is much — Northern Yellow Sea: 363.1

smaller than satellite gCm?2y’

estimates. — southern YS: 536.5 gC m™
—1

Park and Yoo (2010) y

hvll X 2 — northern East China Sea
compared 4 chlorophy (ECS): 413.9 ¢C m-2 y-

PP algorithm combinations: o S0, 058 o0
96.5 to 610.2 gC m~2 yr 1. u ?2/‘11 SN : o glm



