

High net growth of phytoplankton under the serious nitrogen limitation in the subtropical North Pacific Ocean

Siyu Jiang, Fuminori Hashihama, Hiroaki Saito

Atmosphere and Ocean Research Institute The University of Tokyo 8th CJK IMBeR Symposium 2018/9/18

Background – importance of microzooplankton

Microbial loop and its relationship to classic food chain (Ning, 1997)

Background – importance of microzooplankton

57.7% of the total oceanic surface lacks data on microzooplankton grazing.

Methods – dilution technique (Landry & Hassett, 1982)

A commonly used technique in which natural seawater is diluted with particle-free water at different proportions .

Methods – dilution technique (Landry & Hassett, 1982)

Methods – study stations

Surface water (10m), station 2-17, August-October, 2017

Main results – growth and mortality of phytoplankton community

*net growth = growth - mortality

Main results – growth and mortality of phytoplankton community

 Microzooplankton grazed 47.5% (mortality/growth) phytoplankton daily production.

- Positively correlated;
- Microzooplankton grazing may could not the control factor on phytoplankton growth.

Main results – nutrient concentration

which concentration is lower than the detection limit

Additional nutrient in dilution experiment	Station	4	6	7	8	9	10	11	12	13	14	15	16	17
	NO₃ ⁻ (nM)	<3	<3	<3	3	<3	4	<3	<3	3	3	<3	3	<3
	NO ₂ ⁻ (nM)	3	2	3	3	2	2	<2	<2	3	2	2	<2	<2
	NH₄⁺ (nM)	<4	19	16	10	25	<4	<4	7	16	27	38	<4	37
	PO4₃ ⁻ (nM)	238	186	170	70	102	65	38	28	7	<3	<3	<3	3
	Si(OH)₄ (nM)	1916	1585	1541	1314	1101	1125	977	1003	1027	1006	1234	1106	1060
[DIN:P	0.01	0.11	0.11	0.23	0.26	0.09	0.00	0.25	3.14				12.33

Nitrogen limitation

Main results – growth and mortality of phytoplankton community

Main results – specific pigments

Low nutrient support high growth?

- The prokaryotic phytoplankton cells are efficient in acquiring nutrients because of their extremely small sizes;
- and could possess a low-nutrient halfsaturation growth constant;
- might have adapted to the oligotrophic environment.

Main results – phytoplankton community composition

surface phytoplankton composition

prokaryotic phytoplankton: *Prochlorococcus* (Dv Chl *a*) *Synechococcus* (Zeaxanthin)

Main results – specific pigments

- Prokaryotic phytoplankton (dominant Prochlorococcus represented by Dv Chl a) : higher net growth
- Eukaryotic phytoplankton

(e.g. diatoms represented by Fucoxanthin):
lower growth + high mortality
→ lower net growth

Thanks for watching!

Three assumptions:

1. Phytoplankton growth rates must be independent of the dilution level;

2. The ingestion rate of microzooplankton must be linearly proportional to their

concentration;

3. The changes in the density of phytoplankton over time follow an exponential model.

 $P_t = P_0 \times e^{t(k-g)}$

Contents

- Research background
- Methods
- Main results

Growth and mortality rates calculated from specific pigments

Pigment	Abbreviation	Phytoplankton group	
Fucoxanthin	Fuco	Diatoms	
19'-hexanoyloxyfucoxanthin	Hex	Haptophytes	Eukaryotes
19'-butanoyloxyfucoxanthin	But	Pelagophytes	
Zeaxanthin	Zea	Synechococcus	
Divinyl chlorophyll a	Dv	Prochlorococcus	Prokaryotes

Specific pigments – prokaryotic phytoplankton

- No correlation;
- Microzooplankton grazed 36.4% daily production

- Positive correlated;
- Bottom-up control;
- Biomass accumulation

Further discussion – higher growth rate?

Further discussion – low microzooplankton grazing?

- Mixed Layer Depth (MLD) determined as the depth at which the temperature difference with respect to the surface was 0.5°C.
- This definition of the mixed layer provides an estimate TEMPERATURE [°C] of the depth through **Phich sur** mixed in recent days. DEPTH [M] DIVA / Main / DIVA ▲ Mixed Layer Depth Section Distance [km]

Further discussion – low microzooplankton grazing?

 When vertical mixing occurs, the particle-poor subsurface waters dilute the surface water within the euphotic zone, acting as a natural "dilution" experiment.

Three assumptions:

 Phytoplankton growth rates must be **independent** of the dilution level;
The ingestion rate of microzooplankton must be linearly proportional to their concentration;

 The grazer biomass and grazing impact on phytoplankton decreases and the net growth rate of phytoplankton becomes positive and phytoplankton biomass accumulates.

DEPTH [M]

