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1.Introduction

The Changjiang (Yangtze) River 1s one of the major river-borne material
contributors to the East China Continental Shelf. The river water flows into the
Yellow and East China Sea and forms the Changjiang River plume. The plume can
extend to three directions, whose southern branch imposes great impacts on the
ecosystem and sedimentary system of the Zhejiang-Fujian (Zhe-Min) Coastal
Water and drives a buoyant coastal current (Zhe-Min Coastal Current, ZMCC). It
was conventionally believed that the ZMCC prevails in winter but vanishes in
summer, as controlled by the Eastern Asian Monsoon. However, a down-shelf
buoyant coastal current can also be detected in the ZMCW even under upwelling-
favorable summer monsoon (L1 et al.,, 2014). The Zhe-Min Coastal Water 1is
energetic with strong tide, shelf currents, winds and buoyancy inflow. In this study,
we used a 3-D hydrodynamic numerical model to look into the variations of the
Changjiang River plume in such energetic environment, investigate the major
driving forcing of the ZMCC, and try to answer why the ZMCC persists against the
upwelling-favorable wind in summer.

Fig. 1 Map and bathymetry of
the East China Continental
Shelf (a), observations of
summer ZMCC (yellow
vectors in (a), Li et al., 2014),
Section A (green line in a),

locations of the Zhe-Min mud
belt and hypoxia and harmful

algae bloom (HAB) events (b)
and the model domain (c)

23°N, i
17°E 118°E 119°E 120°E 121°E 122°E 123°E 124°E 125°E 126°E 127°E 128°E 129°E 130°E

2. Methods

The 3-D hydrodynamic numerical model used in the study is developed from
ECOM-s1. The model covers the entire East China Continental Shelf as well as
parts of the Japan Sea and the Northwest Pacific Ocean (Fig. 1¢). Tide, shelf current
and Changjiang River discharge are included in the simulation. The model has been
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validated by a series of in-situ data and performed well.
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Fig. 2 Model validations
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Fig. 3 Climatologically seasonal mean occurrence
probability of bottom salinity front (color), surface
30-psu isohaline (purple contours )

Fig. 5 EOF analysis of bottom salinity gradient
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Fig. 6 Diagnostic experiments on response of the 2 2 B e 10 8
Changjiang River plume to different Changjiang River Fig. 7 Response of the Changjiang River plume
discharge and wind forcing conditions front to different tidal intensities

4. The Major Driving Force of the ZMCC, Wind or Buoyancy?

* Buoyancy of the plume water 1s the major direct driving force of the ZMCC.
* The direct contribution of wind is less than 20%. However wind can also
significantly modulates the ZMCC by redistributing the plume water.
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Fig. 8 Annual means and time series of subtidal surface and bottom salinity (a, e), bottom salinity gradient (b, f)
and residual volume flux (c, g) from the climatological run, residual volume flux (d, h) from the experiment
without Changjiang River discharge (other conditions are same as the climatological run), and total down-shelf
volume transport from both experiments (1) in Section A

5. Sustention of the Plume Front and the ZMCC in Summer

* The Changjiang River plume provides vertical stratification in the Zhe-Min
Costal Water under upwelling-favorable summer monsoon.

* Tidal mixing induces a plume front along the Zhe-Min Coastal Water under the
stratified environment.

* The tidal-induced front drives a down-shelf buoyant coastal current (ZMCC) that
flows against the wind.

* The down-shelf current provides plume water to the Zhe-Min Coastal Water and
maintains stratification there.
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Fig. 10 Respoﬁse of the Changjiang River plume and

Fig. 11 Simpson-Hunter Number (a), evolutions of
residual surface currents after shutting down tide (a-c) and  jown-shelf volume transport and bottom salinity
Changjiang River discharge (d-f) under southerly wind gradient in the “stratification-tide” experiment (b-¢)
6. Summary

* The Changjiang River plume along the Zhe-Min Coastal Water persists bottom-
trapped and drives a down-shelf buoyant coastal current (ZMCC) throughout
the whole year.

* Buoyancy i1s the major direct driving force of the ZMCC, while wind also
significantly modulates the ZMCC by redistributing the buoyancy.

* Tidal-induced front sustains the plume water along the Zhe-Min Coastal Water

and the ZMCC under upwelling-favorable summer monsoon.
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