Interannual variability in the chlorophyll concentrations on the Mid-Atlantic Bight along northeast United States

Yi Xu, Travis Miles, and Oscar Schofield

¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University

² Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University

The 8th China-Japan-Korea IMBeR Symposium • ECNU • Shagnhai

MAB: Productive Shelf, influenced by oceanographic and meteorological physical forcings. strong seasonal variability Cape

MAB is warmer, fresher

FIG. 5. Annual average SST anomalies (section 3a) along the U.S. East Coast. Along-shelf regions are shaded, and the dashed line indicates the approximate position of Cape Hatteras (36°N).

Figure 6. MAB-wide anomalies in SHW volume, salinity, and temperature.

(Mountain, 2003)

(Shearman and Lenta, 2010)

How these **regional environmental changes** in combination with a **changing climate system** might influence regional **primary production**?

The SeaWiFS and MODIS Chla comparison

(sensor performance and retrieval algorithms)

Chl a climatology and anomalies

(c) %EOF 1

0.04

(a) Mode_1

spring and fall blooms that offset declines in winter.

Observations of fall-winter bloom and spring bloom

Circulation and biogeochemical modeling

Fennel, K., et al 2006. Glob. Biogeochem. Cyc., 20, doi:10.1029/2005GB002456.

Model Validations

Inner-shelf

Hydrolight radiative transfer :

Parameter	Shelf vall ey	Offshore Hudson River	Inner-shelf	Outer-shelf	•
Mean Chl <u>a</u>			1.7	0.7	•
Maximum Chl <u>a</u>			4.9	2.1	
Minimum Chl <u>a</u>			0.6	0.2	
Mean 1% Light depth	20	10	20	33	•
Mean Water Depth			41	200-6811	
Percent of water column above the 1% light	50%	25%	49%	5–17%	

- 25-50% of the inner-shelf water column above the 1% light level.
- 5-17% of water column of outershelf are above the 1% light level.

POTENTIAL ENERGY ANOMALY (PEA)

(amount of energy per volume that is necessary to vertically homogenize the entire whole water column)

$$\phi = \frac{1}{D} \int_{-H}^{\eta} gz(\overline{\rho} - \rho) dz$$

PEA > 0 (stable stratification)

PEA = 0 (fully mixed)

PEA < 0 (unstable stratification)

PEA are largely influenced by wind, river, and NHF

$$\frac{d\phi}{dt} = \frac{\alpha g Q}{2c} + \frac{g(E-P)\Delta\rho}{2} - \varepsilon k_b \rho \overline{|u_b|^3} - \delta k_s \rho_s \frac{\overline{W^3}}{h} + \frac{g}{h} \frac{\partial\rho}{\partial y} \int_{-h}^{0} (v - \hat{v}) z dz$$

Surface Salt flux Tide mixing Wind mixing River runoff

Model sensitivity study for stability (wind, river, net heat flux)

no river no net heat no wind

Inner-shelf:

- Initial of fall bloom (wind)
- •Magnitude of fall-winter bloom (wind, net heat flux, and river buoyancy)

Outer-shelf:

- Initial of spring bloom (wind)
- •Magnitude of spring bloom (wind, net heat flux)

Decadal variability of **river**

Highest freshwater river discharge occurred during the spring.

There is a decreasing trend of winter river discharge since 2005 (with R=-0.81, p<0.01).

Decadal variability of wind

There was an increasing trend of wind speed in the winter and fall, and decreasing trend during the spring over the 34-year time series

In conclusion

- Surface chlorophyll concentrations of the MAB have been increasing driven by larger spring and fall blooms that offset declines in winter.
- Opposite tendency of winds and chl <u>a</u> are found in winter and spring, similar tendency of winds and chl <u>a</u> are found in fall.
- Combined satellite data and regional models are used to study the underlying mechanisms controlling phytoplankton distributions.

